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◮ One attractive method that is scalable for high-dimensional
problem is ensemble Kalman filter. When ensemble size is too
small, the covariance is underestimated, it is common to
empirically inflate the covariance via:

Rm ← (1 + r)Rm (Anderson & Anderson 1999)

Rm ← Rm + Q (Kalnay et al. 2007)

◮ There are also adaptive schemes to estimate inflation factors
(Anderson 2007, 2009, Li et al. 2009, Miyoshi 2011).
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◮ Our goal is to mathematically understand the covariance
inflation in the context of filtering multiscale systems with
moderate scale gap in the presence of model errors through
reduced dynamics from subgrid-scale parameterizations.

◮ In particular, we will compute the effective “statistical”
inflation for analytically solvable linear and nonlinear filtering
test problems with one order higher perturbation expansion
than the usual averaging limit.

◮ We will formulate these statistical inflations with a
dynamically consistent reduced stochastic model. For linear
problem, we will find a naturally arise additive noise
correction. For nonlinear problem, we will find a naturally arise
multiplicative noise correction in addition to additive noise.



Averaging linear problem (Pavliotis & Stuart 2000)

Consider

dx = (a11x + a12y) dt + σxdWx ,

dy =
1

ǫ
(a21x + a22y) dt +

σy√
ǫ
dWy ,

We assume:

◮ σx , σy 6= 0 and the deterministic dynamics are stable to assure
the existence of a unique joint invariant density ρ∞(x , y).

◮ Furthermore we require ã = a11 − a12a
−1
22 a21 < 0 and for fixed

x , the fast dynamics is ergodic.
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We assume:

◮ σx , σy 6= 0 and the deterministic dynamics are stable to assure
the existence of a unique joint invariant density ρ∞(x , y).

◮ Furthermore we require ã = a11 − a12a
−1
22 a21 < 0 and for fixed

x , the fast dynamics is ergodic.

Then for a finite time, the solutions of the slow dynamics converge
to the solutions of

dX = ãXdt + σxdWx .
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a22
x −√ǫ σx

a22
Ẇy +O(ǫ)

and substitute it to the slow equation and ignore the O(ǫ)-term,
we obtain

dX̃ = ãX̃ dt + σxdWx−
√
ǫσy

a12

a22
dWy .

Remarks:

E(X̃t) = e ãtE(X̃0)

Var(X̃t) = Var(X̃0)e
2ãt − σ2

x

2ã
(1− e2ãt)−ǫa

2
12σ

2
y

2ãa222
(1− e2ãt)

= Var(x0)e
2ãt + Q0 + ǫQ1.



Pathwise error estimate

Theorem
Consider the full linear multi-scale system with the assumptions.

Let xǫ be solutions of the full multi-scale system and X̃ be the

solution of the reduced equation,

dX̃ = ãX̃ dt + σxdWx −
√
ǫσy

a12

a22
dWy ,

corresponding to the same realizations Wx ,Wy . Let x
ǫ(0) = X̃ (0).

Then the error e(t) = xǫ(t)− X̃ (t) is bounded for finite time T by

E

(

sup
0≤t≤T

|e(t)|2
)

≤ cǫ2.
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Let xǫ be solutions of the full multi-scale system and X̃ be the

solution of the reduced equation,

dX̃ = ãX̃ dt + σxdWx −
√
ǫσy

a12

a22
dWy ,

corresponding to the same realizations Wx ,Wy . Let x
ǫ(0) = X̃ (0).

Then the error e(t) = xǫ(t)− X̃ (t) is bounded for finite time T by

E

(

sup
0≤t≤T

|e(t)|2
)

≤ cǫ2.

Remark: This result extends that in (Zhang 2011) which provides
a linear convergence rate for the classical averaged model,

dX = ãX dt + σxdWx .



Pathwise error convergence rate.
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Figure : Convergence of the full model and the reduced models on a time
interval 0 ≤ t ≤ T = 250. Linear regression of the two data sets reveals
a slope of 0.9 and 1.8 for the error of X and X̃ , respectively.



Implication on data assimilation

We consider approximating the following filtering problem,

dx = (a11x + a12y) dt + σxdWx ,

dy =
1

ǫ
(a21x + a22y) dt +

σy√
ǫ
dWy ,

zm = x(tm) + εom, εom ∼ N (0, ro),

with reduced stochastic filters:
◮ RSF (classical reduced stochastic filters)

dX = ãX dt + σxdWx ,

zm = X (tm) + εom.

◮ RSFA (reduced stochastic filters with additive covariance
inflation)

dX̃ = ãX̃ dt + σxdWx −
√
ǫσy

a12

a22
dWy ,

zm = X̃ (tm) + εom.



Linear problem: Filter accuracy
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Figure : Filter accuracy: Average RMS errors as functions of ǫ for
∆t = 1 and SNR−1 = 0.5 (left panel); as functions of SNR−1 for ǫ = 1
and ∆t = 1 (middle panel); as functions of ∆t for ǫ = 1 and
SNR−1 = 0.5 (right panel).



Nonlinear SPEKF model

SPEKF ”Stochastic Parameterized Extended Kalman Filter” model
(GHM 2010) is defined as follows,

du

dt
= −( λ̂)u + b̂ + f (t) + σuẆu,

with λ̂ = γ̂ − iω and λb = γb − iωb.
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(GHM 2010) is defined as follows,

du

dt
= −(γ̃ + λ̂)u + b̂ + b̃ + f (t) + σuẆu,

db̃

dt
= −λb

ǫ
b̃ +

σb√
ǫ
Ẇb,

d γ̃

dt
= −dγ

ǫ
γ̃ +

σγ√
ǫ
Ẇγ ,

with λ̂ = γ̂ − iω and λb = γb − iωb.
Here we consider temporal scales of t/ǫ for b̃, γ̃.

Remark: SPEKF model has explicit statistical non-Gaussian
solutions.



Solutions of SPEKF in three regimes

Recent studies by (Branicki, Gershgorin, and Majda 2012) suggest
that the system above can reproduce signals in various turbulent
regimes for ǫ = 1:
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I. Turbulent transfer
energy regime: γ̃ decays
faster than u.

II. Dissipative range: u
and γ̃ have comparable
decaying time scales.

III. Laminar mode: u
decays faster than γ̃.



Stochastic reduced filter model

Theorem
Assume that f (t) and the statistics up to order-4th moments are

bounded; γ̃ decays sufficiently faster than u. Let uǫ be a solution

of the SPEKF model and U be a solution of

dU

dt
= −λ̂U + b̂ + f (t) + σuẆu +

√
ǫ
σb
λb

Ẇb−
√
ǫ
σγ
dγ

U ◦ Ẇγ ,

where λ̂ = γ̂ − iω, corresponding to the same realizations

Wu,Wb,Wγ . Let u
ǫ(0) = U(0). Then, the error

e(t) = uǫ(t)− U(t) is bounded for finite time T .
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Assume that f (t) and the statistics up to order-4th moments are

bounded; γ̃ decays sufficiently faster than u. Let uǫ be a solution

of the SPEKF model and U be a solution of

dU
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= −λ̂U + b̂ + f (t) + σuẆu +

√
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Ẇb−
√
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U ◦ Ẇγ ,

where λ̂ = γ̂ − iω, corresponding to the same realizations

Wu,Wb,Wγ . Let u
ǫ(0) = U(0). Then, the error

e(t) = uǫ(t)− U(t) is bounded for finite time T .

Remark:

◮ The multiplicative noise in the Stratonovich sense is crucial
for correcting the mean through a drift term.



Filtering vm = u(tm) + ε
o
m, where ε

o
m ∼ N (0, r o),

1. The true filter (GHM:10, MH Ch 13).

2. Reduced stochastic filter (RSF). This approach uses prior
model

dU

dt
= −λ̂U + b̂ + f (t) + σuẆu,

3. Reduced stochastic filter with additive inflation (RFSA).

dU

dt
= −λ̂U + b̂ + f (t) + σuẆu +

√
ǫ
σb
λb

Ẇb,

4. Reduced stochastic filter with combined, additive and
multiplicative, inflations (RSFC).

dU

dt
= −λ̂U + b̂ + f (t) + σuẆu +

√
ǫ
σb
λb

Ẇb−
√
ǫ
σγ
dγ

U ◦ Ẇγ ,



Regime I with ǫ = 1.
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Figure : Filtered posterior estimates (grey) compared to the truth (black
dashes) for regime I with SNR−1 = 0.5.



Regime II with ǫ = 1.
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Figure : Filtered posterior estimates (grey) compared to the truth (black
dashes) for regime II with SNR−1 = 0.5.



Summary:

◮ We presented a study of filtering partially observed multi-scale
systems with reduced stochastic models obtained from a
systematic closure on the unresolved fast processes.

◮ Here, we were not only showing convergence of solutions in
the limit of large time scale separation, but we also tackled
the question of how the stochasticity induced by the
unresolved scales can enhance the filtering skill, and how their
diffusive behaviour can be translated into effective inflation
with naturally arise additive and multiplicative noises.

◮ The main message of this work here is that reduced stochastic
models can be viewed as dynamically consistent way to
introduce covariance inflation as well as mean correction,
guiding the filtering process.


